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1. Summary

The project was started in September 1996. Its goal was to develop techniques
for continual reallocation of resources to maintain application performance
despite statically unpredictable change in resource demands. It was targeted to
multiple application systems executing on HPC (High Performance Computing)
platforms. It was anticipated that such adaptive capability would be needed in
military systems such as SC-21.

As planned for this project, we built on the results of a previous program, called
Adaptive Resource Allocation (ARA). In ARA, we developed techniques for
dynamic reallocation of resources to single parallel applications, structured as
multi-pipelines, executing on a high-performance parallel machine. We extended
ARA results to systems with multiple applications and muitiple machines
connected over a network. '

in October 1997, with DARPA approval, we decided to merge the technical effort
on this project with the RTARM project funded under Quorum. This did not affect
the core statement of work for ARM, but led to a 6-month extension of its
completion date from November 1998 to May 1999. ARM still focused on
developing an approach based on adaptation models, and addressed best-effort
resource allocation in an environment with partitionable rather than shared
resources. However, parallel HPC platforms were de-emphasized in favor of
general distributed computing platforms. Some of the work we had completed, in
particular the software infrastructure for managing multiple MPI-based
applications, became less relevant.

Results from ARM are being integrated into RTARM. The layered architecture of
ARM has given way to a hierarchical architecture characterized by uniformity
across different levels. The MPl-based communication infrastructure in ARM has
given way to a CORBA ORB infrastructure. While ARM implementation was
targeted to Unix machines connected over Ethernet, the target platform for
RTARM consists of Windows NT machines networked over ATM.

The work was performed jointly by Honeywell Technology Center and Georgia
Institute of Technology, under Honeywell direction. This report describes only the
work performed under ARM; hence, it represents an intermediate snapshot of the
larger merged research.

2. Report layout

The report contains the following sections. A brief description of each section is
given below to establish context before details are presented. The list of sections
follows the list of tasks in the statement of work.

« Program Objective — This section describes the general characteristics of
the targeted applications and the overall problem that ARM addresses.




Adaptation Models — This section describes those attributes of
applications and the underlying resources that are needed by ARM. Four
distinct models are described —

1. Application Execution Models capture the manner in which applications
consume resources.

2. Performance and Timing Models capture the performance
requirements of applications in a system.

‘3. Decision Models contain information about run-time detection of
significant transitions in performance.

4. Resource Allocation Models determine how to aliocate and realloéate
resources across applications and within applications

5. Enactment Models describe when and how a new allocation should be
brought into effect, given the potential cost and perturbation of
reallocation.

The main motivation for separatihg information into these models was to
support a flexible architecture for ARM with piug and play capability.

e ARM Architecture: This section describes the layered adaptation
architecture we developed. Each layer engages in negotiation, service
translation, real-time monitoring and adaptation.

e Real-Time Instrumentation: We present an overview of the existing real-
time instrumentation system, SPI, and describe the changes we made to it
for ARM.

e ARM Run-Time System: This section describes the main components of
the run-time support for adaptive resource management, including the
software infrastructure.

o Demonstrations: This section describes the applications we demonstrated
to show proof of ARM concepts.

Finally, we have attached a set of papers that represent the work performed
under this project or built upon it.

3. Program Objective

Future defense systems will likely be characterized by dynamic variability in the
performance demands of their applications. Many embedded DoD applications
will be reactive, as they must interact with changes in an external physical
environment. Often their run-time behavior will also be heavily data-dependent,
depending on scene parameters, sensor modality, range to target, etc.
Consequently, their computing resource requirements will tend to vary
considerably during execution, and for the most part be statically unpredictable.

We refer to such systems as deployable systems. Given their time-varying and
irregular resource needs, it will be necessary to manage resources dynamically.




Without dynamic adaptation in resource allocation, either computing platforms for
deployable systems will have to be oversized or they will fail to meet the
application requirements. In addition, in future military systems, the demand for
higher agility will further require applications to be adaptive.

Effective management of computing resources in such an environment, and the
adaptation of individual application subsystems is a challenging task. Deployable
systems are different from the computing systems used in ground-based
command and control operations over geographical dispersed areas. In
deployable systems, applications are often interdependent; the performance
requirements are usually stringent, and the applications tend to be more dynamic
because they are embedded in a potentially rapidly changing environment.

The objective of ARM was to provide adaptive resource management
mechanisms for specific models of applications, computing environments and
resource usage. Adaptation is viewed in terms of continual allocation and
reallocation of resources among the applications constituting a system to meet
system-wide objectives.

4. Adaptation Models

4.1 Application Models

An application model determines how resources are requested and consumed.
Some applications may be distributed across multiple computers. For example,
the front end of a sensor-based application may be implemented on a SIMD
machine, whereas the back end object processing is often implemented on
general purpose MIMD machines. We assume that the data-parallel components
of applications are implemented on MIMD computers as SPMD programs, which
is a common style for hand-written codes as well as codes produced by
compilers for parallel languages such as HPF.

Multiple applications may run simultaneously on a computer. The nodes of a
computer may be partitioned across applications using either space multiplexing
or time multiplexing. In our research, we limited ourselves to space sharing as it
much more common in commercial HPC computers. Time-sharing is beset with
severe performance penalties due to context switching and the difficulty of co-
scheduling an application’s tasks on multiple nodes on multiple computers.

Workload Model

The workload is a simplified multi-pipeline where individual stages may be
tagged as parallel programs. A pipeline is an acyclically connected set of stages.
A stage has zero or more inputs and zero or more outputs. Stages are connected
by connecting an output of one stage to an input of another. No inputs or outputs

- are unconnected. Signal sources are modeled as stages with no input, signal

sinks as stages with no output. Currently, we assume that there is only one
source and one sink. _
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Figure 1: Multi-Pipeline

The intent is to use a recursive definition, so that even a connected subset of
stages or just one stage, may be viewed as a pipeline. Invocation of a stage is
input-driven. Output is always invocation-driven.

The more complicated the model is, the more complicated is the service request
transiation (SRT). We decided to stay with simpler models because SRT was not
the central focus of our research.

Stage | | Stage
L

Figure 2: A pipeline is a recursive structure of stages

e The workload consists of a set of multi-pipeline applications, each with
end-to-end QoS requirements.

e A multi-pipeline is a DAG of stages, each stage with zero or more in arcs
(inputs), computational load, and zero or more out arcs (outputs).

e Stage invocation may. be periodic (allowed only for source stages) or input-
driven. An input-driven stage is invoked when a specified number of
arrivals occur on each of its inputs.

o Computational load in a stage varies, depending on data sizes at input,
and data-dependence.

e A stage issues output once after every invocation. The output data size
may vary depending upon input data sizes.

o For parallei stages, a description of the parallelism in it.

Parallel programs are often described as task graphs (TG) consisting of tasks
linked by communication edges. Task graphs have no temporal information
about when the communications take place. We decided to use the Temporal
Communication Graph (TCG) concept from Origami, which provides an unrolling
of static task graphs in time. TCG and TG are static, in that the number of tasks
and edges between them do not change at run-time.

Our target description expresses parallel computations as a function of the
number of processors on which it is mapped. Our objective in a specification
mechanism for temporal information was that we could provide a communication
traffic description to NetEx (i.e. source, destination, and traffic pattern) when we
transitioned from ARM to RTARM.
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Figure 3: Workload Model: Pipeline with Parallel Stages

We use an enhanced version of TCG that makes it into a template for
instantiation based on the number of processors allocated to it.

4.2 Performance and Timing Models

QoS is multi-dimensional, each dimension viewed as a range of values - low,
high and a set of thresholds that define points at which some specific action is to
be taken. For example, a drop in QoS below a threshold might trigger adaptation.

QoS includes quality dimensions and service dimensions. The quality dimensions
include - )

e Throughput as a function of input rate, reckoned at output.
e End-to-end latency between source and sink.

Service dimensions include per-stage specification of -

e Computational load as a function of input data sizes, and specification for
each output data size as a function of input data sizes.

¢ |nvocation rate

4.3 Decision Models

A critical component of the reallocation process is the decision model that
determines when a reallocation of resources is necessary. As described earlier,
applications are modeled as an acyclic graph of data-parallel tasks. Data frames
are pipelined through this graph and each of these data-parallel tasks can be
further structured as a collection of subtasks, each running on an individual
processor. The number of subtasks within a task varies as processors are
dynamically allocated to and deallocated from the original task. The subtasks are
instrumented to provide performance measurements in real-time. Detectors
process these instrumented streams of data to produce detection events, each
signaling a major change in performance metrics. Decision models process these
streams of detection events to determine if resource reallocation is necessary,
and if so, to initiate procedures for the computation and enactment of new
reallocations. In ARM, we address the reallocation of processors among tasks to
maintain minimal frame latency through the task graph.
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The majority of existing research on resource allocation and reallocation is
focused on algorithms that determine how to most effectively allocate or
reallocate resources. There is an extensive literature on dynamic resource
allocation, typically in the context of load balancing algorithms. Strategies
typically focus on where tasks must be scheduled as function of available
resources. Research that is more recent has studied dynamic processor
scheduling algorithms in multiprocessor systems and even algorithms for
dynamic control of communication resources in paraliel/distributed applications.

These resource allocation algorithms rely on the existence of a mechanism that
determines when they are invoked, for example, at task arrival time. This does
not permit reaction to run-time load variations within the application. We decided
that for run-time reallocation, it is critical to be able to determine when such
resource reallocation algorithms should be invoked during task execution.
Accurate timing can avoid thrashing during transient workioad changes, permit
low latency reallocation, and in some instances preempt performance
degradation by predicting reallocation needs.

Georgia Tech developed a combination of a low-latency decision model that is
reactive in nature with a relatively more complex decision model that is predictive
in nature. The model is quite insensitive to transient workload shifts or ““spikes",
thereby reducing ineffective reallocations. The model is also quite effective in
predicting impending workioad changes. Thus, the decision model can be
“tuned" based on some knowledge of the application behavior. Using a synthetic
benchmark generator, we experimentally demonstrated an increase in
performance and a decrease in overhead across a range of input data
parameters. While the current implementations are focused on a class of
computationally intensive sensor-processing applications, these decision modeis
are more generally applicable to asynchronous, event-driven computational
models.

By coupling the reactive Bayesian model with the predictive Markovian model,
we create a multi-level decision model capable of improving the performance of
adaptive resource managers under a variety of input conditions. Under average
input conditions, both models contribute to decrease the end-to-end latency of
input frames and reduce the decision and enactment overhead. Toward the
extremes, the Bayesian model proves more applicable to high noise
environments and the Markovian model better suited to low noise environments.
In these situations, the less suited model provides good backup support for the
more effective model.

Under low noise conditions, the Bayesian level keeps track with the baseline
model while the Markovian level pushed the system toward more acceptable
performance states. Under high noise conditions, the Bayesian level filters a
much larger percentage of the input spikes while the Markovian level ensured
performance did not fall below the real-time specifications. Over a wide range of
input streams, the coupled model is shown to maintain or improve the latency
performance while decreasing the number of false triggers and unnecessary
resource reallocations.




Ideas for future work include methods for dynamically varying the Bayesian and
Markovian thresholds in response to the current task-level resource allocation,
and implementing mechanisms for the Markovian model to suggest appropriate
resource allocations for the predicted steady-state behaviors.

4.4 Resource Allocation Models

lt is desirable that the underlying machines appear to the applications as one
virtual machine that can be customized according to their individual and
collective needs. This customizing should take place under control of the
applications as well as automatically when a significant change in resource
demands or availability is detected by the resource management system
cognizant of applications characteristics.

44.1. Allocation and Assignment
Mapping an application to a heterogeneous target platform is a two-part problem:

e Allocation, which concerns the partitions of individual machines that are
allocated to individual applications

e Assignment, which concerns the mapping of software components to
specific processing resources, and may involve consideration of
interprocessor communication behavior of the applications. We will use the
term allocation (or mapping, configuration) to include both allocation and
assignment from hereon.

The ARM system should provide continual on-line reallocation of resources to
meet the overall mission objectives. The following types of events may trigger
resource reallocation —

e Arrival and departure of applications

e Request by applications e.g. when an application knows it is about to enter
a significantly different phase of computation

« Based on potential performance shortfalls detected by the ARM
o Request by the user, e.g. on a mode change

ARM can be effective only if the overhead of reallocation is significantly lower
than the cost of doing no reallocation. Sufficiently fast algorithms are needed to
compute a new allocation. Because of resource reallocation, application
components may migrate across heterogeneous computers, with possibly
significant change in the application’s performance.

44.2. Resource Models

We adopted a hierarchical resource model, with a flat allocation model. For every
resource in the system, a certain amount of resource is free, tested (for
reservation), or reserved. For illustration, if a resource manager manages each




resource, one can represent a parallel machine like the Cray T3D as a machine
where the unit of allocation is the node.

Node Manager Node Manager Node Manager
Processor Processor Processor Reserved
Manager Manager Manager
Processor Processor Processor
Resource Resource Resource
Memory Memory Memory
Manager Manager Manager
Tested
Memory Memory Memory
Resource Resource Resource
Node Node Node
Resource Resource Resource
Free
Machine Resource

Figure 4: lllustration of Resource Model

Similarly, one can represent an IBM SP2 with several nodes, where the unit of
allocation is a percentage of processor allocation.

5. ARM Architecture

ARM is divided into multiple layers, including an application layer and one or
more resource layers. The application layer (A-Layer) is concerned with resource
management issues relating to specific application models, and performance of
the entire application rather than its parts. The resource layer (R-Layer) is
common across many different application models, and encapsulates any
hierarchy in the resources. For example, system layers in a network protocol
stack belong in the R-Layer, and multiprocessor clusters may treat the cluster
and individual multiprocessors as different layers. Potentially, there may also be
a separate mission layer, which addresses mission-level objectives and tradeoffs
across applications to achieve them. For now, only the A-layer and R-layer are
considered.

Each layer is characterized by: workload model, QoS model, service requests,
request translation and generation, negotiation and resource allocation, real-time
monitoring, adaptation models and policies, and enactment. Note that the layered
architecture described in this report has been generalized under RTARM to a
hierarchical architecture.




The following sections describe the layers in more detail. It is currently assumed
that the target applications are sensor-based multiple pipelines. Each layer
receives a service request, translates it, and attempts to provide that service by
negotiating for the services provided by lower layers. Existing already admitted
requests might have to be squeezed through adaptation to release enough
resources to admit new requests.

Mission-Level RM

Application-Level RM

Resource-Level RM
Resource

Hierarchy

Figure 5: Layered Resource Management Architecture

Once a request is admitted and enacted, real-time monitoring allows the
workloads and delivered QoS to be measured. Adaptations are triggered when
the delivered QoS falls outside acceptable threshold regions. As described in the
detailed sections, there is commonality among the possible adaptations. The
Enactment component is responsible for bringing adaptations into effect.

inter-Application
Adaptation i Allocator
| Negotiate Inter-Application |
Translate Detect — Adaptation
< Translate Monitor «—

Figure 6: Resource Management Components in Every layer

Figure-6 shows the main components in each layer. The {R, A} arrows indicate
the flow of service request and monitored or actual {QoS, Workload} respectively
across layers.

51 Mission-Level RM

A mission is a set of applications, some of which may interact with one another.
The set is dynamic as applications may arrive and depart dynamically. RM for
applications is viewed in the context of a global mission-wide objective.
Temporally, a mission may have several phases, with possibly different
objectives and constituent applications. Transition between phases may be




triggered by any of the general trigger conditions considered in ARM, i.e
operator action, detected failure to meet current objective, etc.

Services provided by the M-Layer

The M-layer manages the underlying resources in such a manner as to meet
mission-level objectives. This service may be viewed as being provided to a
mission (rather than to individual applications). QoS parameters associated with
the service are chosen to represent the mission-level objectives. An example of a
mission-level objective is to maximize the overall value of the application set.

5.2 Application-Level RM: A-Layer

Applications may have different programming- or computational models. For this
effort, an application is a multiple pipeline, with possibly a reconfigurable
structure, as described in Section 4. The A-layer does not understand missions,
but manages resources for applications to meet their individual QoS
requirements.

Services provided by the A-Layer

The A-layer provides resource management for individual applications or their
components. It translates the incoming service request and QoS requirements
and generates requests to the R-Layer are for computational services, memory,
and network services. The requests may be made for each service separately, or
jointly. For example, the request for computation and memory services may be
made together if the A-Layer wishes to constrain the allocation to be co-located.

The A-layer also monitor application-level QoS of individual applications, which
requires computing this QoS from information about the delivered QoS from the
R-layer. Hence, the A-layer must at least monitor the actual values for all
components in the application representation. Note that we are assuming
composability of application-level QoS from its component-level QoS, which is a
valid assumption for the multi-pipeline applications.

Adaptation triggers include QoS violation of entire application or substructures,
explicit request from the M-Layer, and detection of failure in lower layers. The A-
layer decides if application-level adaptation is needed. Possible adaptations are:

e Adjust the requested QoS of the application components in a way that
does not violate application-level QoS delivered to the upper layer. Such
adjustment may be localized to a subset of an application or it may be
application-wide. _

» Without changing requested QoS, use the services of the R-Layer to
perform ARA-style redistribution of already allocated resources. This is
based on transfer of resources from application components experiencing
better than requested QoS, to components with worse than requested
QoS.
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5.3 Resource-Level RM: R-Layer

The R-layers represent resource hierarchies. In general, a platform consists of
computers connected over networks. Each computer may be a Symmetric Multi-
Processor (SMP), a distributed memory massively parallel machine (MPP), or a
uniprocessor. Networks may include LAN'’s and high-performance interconnects
providing shared memory.

A SMP consists of processors and memory shared among all processors. A
distributed memory MPP consists of MPP-nodes connected by a MPP-network,
where MPP-nodes consist of one or more processors and memory shared
between them. A workstation consists of a processor and memory.

Service provided by the R-Layer

The R-Layer manages computing, network and memory resources for whole or
subsets of multi-pipeline structured applications. The R-Layer does not
understand applications, although can do application-wide resource management
when the pipeline structure submitted to it is for an entire application. The QoS
parameters in the request from the A-Layer are those associated with muilti-
pipeline application components (e.g. nodes, arcs) and structures.

Requests to the R-Layer are for computational services, memory, and network
services. The requests may be made for each service separately, or jointly. For
example, the request for computation and memory services may be made
together if the A-Layer wishes to constrain the allocated resources to be co-
located.

The R-layer translates incoming service request QoS parameters to QoS
parameters for individual processors and links, for example in the case of MPP's.
The R-Layer monitors the delivered performance and performs low-level
adaptation. As in all layers, adaptation triggers include QoS violation, and explicit
request from the A-Layer.

5.4 Architecture Evolution

As mentioned earlier, the layered architecture described in Section 4 has been
generalized into a hierarchical architecture for resource management. As
applications are built on top of services and services may be built on top of lower
level services, resource management for the entire system is viewed as a
hierarchy of service managers. Each node in the hierarchy can provide support
for admission control, QoS translation, resource allocation, real-time monitoring,
adaptation and enactment. The attached paper "Hierarchical architecture for real-
time adaptive resource management” describes the generalized RTARM

architecture.
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6. Real-Time Instrumentation

We used the Honeywell Scalable Programmable Instrumentation (SPI) system
for real-time monitoring. SPI offers the capability of monitoring a heterogeneous
system in terms of traditional metrics such as latency and execution times, as
well as metrics that depend on application semantics. Compared with other
monitoring approaches, SPI allows the construction and evaluation of arbitrary
detectors using predefined as well as user-defined actions and it also allows
distributed coordination of all instrumentation activity and data.

Under this effort, we extended SPI in several ways - extensions to accommodate
dynamically arriving and departing applications, and integration with the resource
management system.

Georgia Tech used their Falcon system for real-time monitoring. Falcon can
detect significant changes in a number of performance metrics. These monitors
produce instrumented streams of sampled parameter values. Sample parameters
include subtask execution time, subtask communication time, communication
volume, input frame rates, and other measures of application performance or
resource utilization. It is also possible to monitor application-specific measures
such as the frequency of specific message types, access patterns to internal data
structures or any other measure that is representative of the application's
resource usage. Detectors operate on these streams to produce detection events
corresponding to potentially significant deviations in performance guarantees.

7. ARM Run-Time System

This section describes implementation of the main components of the ARM run-
time system, including the ARM Layers, Multi-Application Infrastructure, and the
ARM Control Infrastructure.

7.1 Multi-Application Infrastructure

The core of this implementation is an infrastructure to control the processes of an
MPI application dynamically by shrinking and expanding the number of
processes in a graceful manner. We used the LAM version of MPI because of the
dynamic process spawning capability that it provides to the user. This
infrastructure contains a two-level resource manager system (system resource
manager and application resource manager).

This infrastructure allows multiple applications to co-exist on the system under
the control of a system resource manager. The system level resource
management layer is between application level resource management and the
operating system(s). The objective of the system resource manager is to
continuously monitor and keep up the overall performance level as defined by the
mission. This SW architecture is as shown in the following Figure. It enables:

e Applications to be spawned on multiple (distributed) processors
e Applications to receive a given QoS

12




- Negotiation between the resource manager and the application
- Dynamic reconfiguration of the number of application processes as and
when the need arises
o Perform dynamic feedback adaptation operations within an application

ARM assumes that the application programs use MPI (not necessarily the LAM
version). All application processes must call the ARM initialization procedure
when they start and a termination procedure when they exit.

7.1.1. ARM Server

We implemented a central ARM server (system resource manager) and built
utilities (and APIs) through which multiple application programs can execute in a
controlled manner. Currently the server provides the following run-time services:

¢ Admit new applications
e Expand (grow) current application in size
e Shrink current application in size

A user or an application agent can request these services. At any point of time,
the server maintains information about resources, applications and the binding of
resources to applications. It also maintains two request queues: one for the
currently active applications and one for newly admitted applications. These
queues are maintained for only those requests that require new (additional)
resources. For example, admit and expand both requires resources. In the case
of shrink, the request is handled immediately. Four types of triggers invoke the
scheduler.

o After an application admission
e After an application departure
o After an application shrinkage
o After an application expansion request

Currently, we have a simple FCFS scheduler that first considers the queue for
the active applications, and then considers the queue for new applications for
scheduling.

7.4.2.  ARM Agent

ARM Agent is spawned automatically by the ARM server. Currently, for every
application, the server spawns one agent, which in turn spawns the application
processes. We also implemented synchronization protocols for information
exchange among the ARM Server, ARM Agents, and the application processes.

Application Growth: The growth of an application (in terms of number of
processes) can be initiated either by the server or by the agent. We have defined
two types of protocols for their synchronization - a synchronous protocol and an
asynchronous protocol. In the synchronous protocol, the server issues a "grow"
command to the agent, which then informs all the application processes. If the
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agent gets back acknowledgement from all of the application processes within a
certain time, it sends back an acknowledgement to the server. If this
acknowledgement is received by the server before its timer expires, it send a
commit message to the agent which then does the same to all of application
processes and then the grow process takes place. In case the timer expires in
either the server or the agent, they issue a cancel message to the appropriate
parties immediately.

In the asynchronous protocol, the server is optimistic and sends only a single
message to the agent and the agent is responsible to inform the server
asynchronously about the success or failure of the operation. If the message
does not reach the agent due to any reason, the server learns that only when the
application departs.

Application Shrinkage: As with application growth, shrinking can be initiated
either by the server or by the agent. If an agent is the initiator, it asynchronously
informs the server, which then makes an update. If the server is the initiator, it
goes through the protocols. For shrink we have implemented two protocols
similar to those for application growth.

7.1.3. ARM Control Infrastructure

This implementation consists of the ARM layers for admission and adaptation
control. This package consists of several integrated modules - admission control,
real-time monitoring, and feedback adaptation. The ARM layers (A-Layer and the
R-layers) are bundled as a single library package used by a centralized ARM
controller for admitting new applications. The new applications request the
service through an ARM server. The ARM controller was implemented as an
Event-Action machine of the SPI (Scalable Programmable Instrumentation)
system, which was extended to handle dynamic arrival of the processes to be
monitored. The control software architecture is as shown in the following figure:

Application

ARM
> Server

Feedback ARM Main SPI
Adaptor ¢ Controller [¢ > EA M/C

i T lSpawn
o | O O OO

(MPI)

Invoke

Figure 7: ARM Control Infrastructure

To start ARM, the LAM daemon is started by the user with the required hardware
configuration. The user then starts the SPI loader, which starts the SPI main EA
machine, the ARM controller, and the other required SPI EA machines. In the
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current implementation, there is a single ARM controller instance and multiple
monitor instances. Each ARA monitor is associated with the set of application
processes and a SPI real-time dispiay.

To start an application, a user uses a client utility, which establishes connection
with the ARM controller and forwards the user's request for admission, shrinkage
or expansion. A new initialization protocol is added to all application processes to
facilitate communication from the ARM controller to the application processes.
This protocol requires application processes to establish a socket connection to
the ARM controller. The application processes then continuously look for
remapping messages from the ARM controlier on this socket during execution.

7.2 ARM Layers

The control of a layer's functionality is embedded within a manager for that layer.
These layer managers are responsible for allocation of resources and adaptation,
using the services of the lower layer wherever necessary.

7.21. A-Layer

In the ARM implementation, the interface to the A-layer is through an object
(class) called AppManager. The AppManager manager is a specialization of the
Manager class. It contains objects such as the negotiator, allocator, enactor,
detector and adaptor. The AppManager also has a reference to the R-layer
manager (ResManager). This reference is created during the instantiation of the
AppManager. The application (task) requests service from the A-layer using the
method TestAndHold() of the AppManager object. The AppManager assigns an
ID (task id), then uses its negotiator object to request appropriate service from
the R-layer (since the A-layer by itself does not have resources).

The Negotiator translates the application request into one that is understood by
the R-layer. This transiation is called the forward translation and it involves
translating task structures along with workloads and QoS. After translation, the
negotiator makes a request to the R-layer manager. through the reference
maintained by the AppManager. Once the request returns, the negotiator
translates back the assigned QoS into the one understood by the A-layer
(backward translation). After this, the control passes back to the AppManager,
which then reviews the returned QoS and returns it to the requesting task along
with a task identifier. Further interaction between the requester and the
AppManager takes place through the foliowing methods using the assigned task
id: Reserve (), Release (), Abort (). Whenever resources aré allocated, the
AppManager maintains the task structures corresponding to the two layers along
with their task ids and the resource allocation (QoS allocation) info in a hash
table indexed by the task id. This is part of the TestAndHold () method. The task
model understood by the A-layer is the ‘App’ class, which inherits from both
“Task’ class and the ‘Graph’ class.
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7.2.2. R-Layer

The entry point for this layer is the ResManager object. It contains handles to the
actual resources (managed by appropriate managers). The purpose of this object
is strictly to provide a body for embedding the main control loop of the R-layer.
The A-layer requests service from this object using the method TestAndHold ().
The task model in R-layer is calied the execution graph and is represented as a
class named ExecGraph. The ResManager calls the negotiator of this layer to
make request to the actual resource managers.

7.3 ARM Controller

The ARM controller is responsible for admission control and starting of
application processes. Once applications processes are started, they send
performance information to the ARM controller through SPI channels established
during initialization phase of the application process. Depending on the
application id (which is assigned by the ARM controller) of the process that is
sending data, the performance data is routed to an appropriate monitor. Each
application is assigned one monitor. When the ARA monitor decides to remap an
application, it sends the new mapping to the ARM controller for that application.
For this purpose, it uses a TCP/IP channel established between itself and ali the
application processes as part of the application initialization protocol.

8. Demonstrations

We developed three demonstrations for this project. The first demonstration was
given in October 1997 on a network of Sun Solaris machines as shown in the
Figure below. It showed QoS-based admission control and dynamic resource
allocation for multiple synthetic sensor-based MPI applications.

Applications Application

process creation on
Solaris stations

Solaris Processes

Network (Ethemnet)

Figure 8: Vertical slice demonstration in October 1997
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The vertical slice implementation included — a) a layered architecture for
management of processor resources, b) admission control including QoS
translation, and c¢) dynamic reconfiguration based on feedback of actual QoS
(real-time monitoring, detection, and reallocation) within individual applications.

Georgia Tech contributed two demonstrations focusing on the utility of the
technology and techniques developed in this project. They developed several
additional applications with the objective of demonstrating specific levels of
improvement.

Decision Models

Experiments using a synthetic workload generator and the statically defined
decision model parameters yielded promising results. With the Bayesian decision
model, we realized an overall reduction in unsuccessful invocations of the cost
evaluator and number of unnecessary resource reallocations. This allowed more
cycles for useful computation and masked the use of the more complex
Markovian decision process. Experiments with frame latency showed similar or
improved performance compared with the simple decision model for a
significantly lower number of remappings.

Integration of the reactive Bayesian model with the predictive Markovian model
improved latency and reduced false reallocations under a variety of input
conditions. Under average input conditions, both models contributed to
decreasing end-to-end latency and reducing the decision and enactment
overhead. The Bayesian mode! proved better in high noise environments and the
Markovian model proved better in low noise environments. In these situations,
the less suited model provided good backup support for the more effective
model. Under high noise conditions, the Bayesian level filtered a much larger
percentage of input spikes while the Markovian level ensured that performance

did not fall below the real-time specifications.

Vision Application

Georgia Tech evaluated some of their adaptation techniques on a vision
application called Pfinder. The application consisted of a camera function, X-
interface handler, and image processing functions. Adaptation was performed by
reconfiguring the application mapping based on on-line monitoring of data flow
rates.

Evolution of Demonstrations

Since the merger of this project with Real-Time Adaptive Resource Management
(RTARM) in 1997, we targeted our demonstrations to the new hierarchical
resource management architecture. A description of the technical features of the
demonstrations is given in the attached papers.
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9. Publications

The following publications based on this work are attached. Some of the
publications describe research derived only partly from this project, and contain
the results of subsequent continuing work.

e D. Ivan Rosu, K. Schwan, S. Yalamanchili, and R. Jha, "On adaptive
resource allocation for complex real-time applications”, in Proceedings of
the 18th |IEEE Real-Time Systems Symposium, San Francisco, December
1997.

e D. Paul, S. Yalamanchili, K. Schwan, and R.Jha, "Decision modeis for
adaptive resource management in multiprocessor systems".

o M. Cardei, |I. Cardei, R. Jha, and A. Pavan, “Hierarchical Feedback
Adaptation For Real Time Sensor-based Distributed Applications”

e |. Cardei, R. Jha, M. Cardei, and A. Pavan, “Hierarchical Architecture For
Real-Time Adaptive Resource Management”.
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Abstract

Resource allocation for high-performance real-time ap-
plications is challenging due to the applications’ data-
dependent nature, the dynamic changes in their external
environment, and the limited resources available of the
embedded systems on which they run. These challenges
may be met by use of Adaptive Resource Allocation (ARA)
mechanisms that can promptly adjust resource allocation to
changes in applications’ resource needs, whenever thereisa
risk of failing to satisfy the application’s timing constraints.
Although not decided by the application, such adjustments
satisfy the application’s adaptation capabilities. ARA elim-
inates the need for ‘over-sizing’ real-time systems o meet
worst-case application needs. This paper proposes an ap-
plication model used to describe the application’s resource
needs and its adaptation capabilities. The model also de-
scribes the runtime variation of application needs. The pa-
per also proposes a satisfiabiliry-driven set of performance
metrics for capturing the impact of ARA mechanisms on the
performance of real-time applications. The relevance of the
proposed metrics sel is demonstrated experimentally, us-
ing an adaptive, synthetic application designed to represent
time-critical applications in C*1 systens.

1. Introduction

Motivation. The resource management problems for real-
time and embedded applications are exacerbated by the dy-
namic changes in their external environment and by the
restrictions on resource availability. One commonly used
solution is the worst-case resource allocation. In many
cases this is not a realistic option because of the exceedingly

*Funded in part by DARPA through the Honeywell Technology Center
under Contract No. B09332478and Contract No. B09333218,and by NSF
equipment grants CDA-9501637, CDA-9422033 and ECS-9411846.

jha@src.honeywell.com

high resource estimates resulted from complex interactions
among the application components. If static resource al-
location is not viable, adaptive methods must be used to
adjust resource allocation to changes in the application’s
needs, therefore reducing the likelihood of failing to meet
its real-time constraints.

Contributions. This paper describes and evaluates models
and mechanisms for Adaptive Resource Allocation (ARA)
in the context of high performance, embedded applications.
We consider applications with data-dependent execution,
driven by event streams, composed by multiple, possibly
parallel interacting components. Runtime changes in event
rates and more importantly, in the data content of these
events cause important changes in the resource needs of var-
jous application components. For such applications, it is
simply not feasible to model accurately the per-event pro-
cessing and communication needs. This class of applica-
tions includes radar systems [26], robots [7, 35. 39], target
recognition, multi-object tracking, hypothesis testing [25].

ARA mechanisms can be used to promptly adjust re-
source allocation to changes in applications’ resource needs,
whenever there is a risk of failing to satisfy the application’s
timing constraints. Although not decided by the applica-
tion, these adjustments satisfy its adaptation capabilities
and eliminate the need for ‘over-sizing’ real-time systems
to meet worst-case application needs.

This paper describes a novel model for capturing an ap-
plication’s adaptation capabilities by specifying the resource
needs corresponding to each acceptable configuration. In
addition, the model permits to capture the runtime varia-
tion of the resource needs caused by unexpected changes in
application behavior.

Given the real-time nature of the applications targeted by
this research, we propose to evaluate the ARA mechanisms
by their impact on the satisfiability of the applications’ real-
time constraints. Specifically, we submit that itis essential to
consider the latencies with which ARA mechanisms respond
to changes in application needs when attempting to restore
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the satisfiability of real-time constraints. The quality of
ARA decisions is evaluated with respect to how fast the
application can return to acceptable performance and how
good the performance in steady state is compared to the
levels imposed by applications’ real-time requirements.

In this study we identify elements that contributed to the
effectiveness of ARA methods and heuristics. More specifi-
cally, we experimentally show the effects of early detection,
enactment overhead, and incremental reallocation heuris-
tics. Assumptions and Experimental Environment. In
this work we assume that a multi-machine environment is
destined to asingle, complex application. Asaresult, perfor-
mance perturbations are produced only by dynamics in the
application’s external environment or by changes in resource
availability due to failures or explicit removals/additions.
We also assume the explicit use of admission control mech-
anisms to guarantee sufficient resources to meet an applica-
tion’s initial required performance levels.

The models and heuristics proposed here are evaluated in

the context of a centralized ARA controller. Online moni-
toring is performed with mechanisms described in [14]. Ex-
periments are conducted with a synthetic application run-
ning on a cluster of workstations. The application is de-
signed by Honeywell in the context of high performance
C3*I' applications[25].
Related research. Previous work has described frameworks
and mechanisms that facilitate the creation and use of online
adaptation heuristics for real-time applications [5, 18, 22],
including mechanisms for runtime monitoring, adaptation
enactment, and mechanisms that ensure the reliable exe-
cution of applications [5, 22] or maintain high application
throughput [18]. In comparison, the focus of this paper is
not to define new frameworks, but instead, to define models
and methods to be used in such frameworks and to analyze
their effect on the adaptive applications.

Extensive research has addressed the problem of dynamic
resource allocation for both the real-time [1, 3, 4, 9, 15, 17,
31. 40] and the non-real-time [13, 23, 27, 34] domains, typ-
ically considering dynamic resource allocation in the con-
text of load balancing. However, the methods developed in
these studies do not fit our target application model. This
is because our model assumes that the resource needs of
a time-constrained task, even when generated by the same
type of event may vary throughout the execution of the ap-
plication. This variability prevents us from using a periodic
task model [15, 17] in which performance requirements are
fixed throughout an application’s execution, and therefore
worst-case needs have to be considered. It also prevents
us from using a sporadic task model, as in the real-time
[9, 31, 40] or the non-real-time [13, 34, 23] domains, be-
cause of the high overhead of taking resource allocation
actions at each task arrival. In addition, the specification of
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a real-time parallel task, as needed for an application com-
ponent, is either too complex - in the real-time models, or
incomplete - in the not-real-time models, because it does
not describe the interaction among the paraliel models of
the same component.

Resource reallocation triggered by runtime variation of

application needs has received less attention. The schemes
proposed for bothreal-time {4, 32, 17] and non-real-time [ 18,
23, 27, 38] domains do not consider the transitory effects of
reallocation mechanisms on the satisfiability of application’s
performance constraints. In contrast, they are primarily
interested in using adaptations to attain optimal average-
case performance.
Overview of paper. In the remainder of this paper, we
first identify the application and the ARA model driving our
research (Section 2). In Section 3, we describe two impor-
tant components of the application model used for ARA:
the application resource usage model and the application
adaptation model. In Section 4 we identify specific ARA
performance criteria derived from the real-time nature of
our target application. Last, in Section 5, we demonstrate
by experiments the relevance of these criteria and identify
methods that help improve ARA performance.

2. Real-Time Applications and ARA

Application Model. Our research targets reactive, high per-
formance applications that must meet well-defined real-time
constraints in dynamic execution environments. Each such
application consists of multiple interacting components ca-
pable of executing in a distributed environment consisting
of parallel machines, embedded-system components (e.g.,
signal processors), and user interface stations (e.g., work-
stations). Components are either sequential or parallel tasks
and their resource needs may be data-dependent varying
with changes in the rate or content of data inputs. In re-
sponse, many components are programmed such that they
can adapt their resource needs at runtime. by changes in
their execution mode, algorithms or specific attributes such
as the level of parallelism or communication protocols.

An application’s execution is driven by event streams
produced by the external environment or application com-
ponents. Each event stream is processed by a fixed set of
components, with fixed precedence constraints described by
a communication graph. The input pattern of a stream may
vary with changes in the execution environment. We use
the term intra-communication to name the communication
among parallel modules of the same application compo-
nent, and the term inter-communication to name the com-
munication between the component and its neighbors in the
communication graph. We assume that, for each event, the
intra-communication happens throughout the event process-
ing while the inter-communication happens in a burst at the




end of the source component computation.

The application’s performance requirements are defined
by constraints with respect to event rate, end-to-end latency,
and inter-component relative completion delays. Each tim-
ing constraint may have specific bounds on its miss rate
and/or burst.

1500 Hz
—>
02sec N\ 0.5 sec 4Hz ./

oD — () — € > @D

Radar input _ [T Sensorfactuator
Missilc tracing 7" 7 <> App. component
Missile control -

Figure 1. Radar Application

Sample Application. One sample application driving this
research is a radar system. Figure 1 presents part of such a
system, as described in [26]. Derection, Track Init and Track
Identif are computation-intensive tasks, each well suited for
parallel implementation [25]. Over time, their processing
and communication needs vary with the number and char-
acteristics (e.g., amplitude, direction) of dwells. Given the
nature of their computation [25], these tasks can adapt by
changes in their levels of parallelism.

The main event streams in the radar system are (1) the
input from the radar, (2) the input from the missile tracking
device, and (3) the missile control requirements. Timing
constraints concern necessary event rates and processing
latencies. For instance, the rate of the radar input is 1500Hz,
and the missile control events must be sent at a rate of
4Hz. Additional constraints are: a 0.2 second-bound on the
latency between Detect-ing a potential missile and engaging
Search Control, and 0.5 seconds bound on the execution of
Engage.

The radar system is one of the many applications con-
cerned with processing signals from a sensor suite, forming
hypothesis about and assessing the situation, and taking
an appropriate response based on data observed and pro-
cessed over a period of time. Other examples are multi-
hypotheses tracking and image understanding(25). Often
the front end of these applications consist of signal process-
ing stages whose computational needs are predictable, as
they are independent of the signal values. However, com-
putations at the back end depend on the semantic content of
the signal values, being often heavily data-dependent.
Specific Resource Allocation Problems. The application
model presented above poses interesting resource allocation
problems. First, the event-stream-based execution makes
viable the option of using long term resource allocation.
Alternatively, a short term resource allocation based on dy-
namic real-time scheduling decisions [31, 3, 40], is prone
to add a too much overhead to each event processing, in
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particular because the application components might often
be parallel tasks executing in a distributed environment.

Second, the worst-case based allocation, the typical ap-
proach used in complex real-time systems, might not be
appropriate for any application in our targeted class. In the .
context of data-dependent resource needs, it might be very
difficult to evaluate the worst-case needs with enough accu-
racy to ensure both a safe execution and acceptable resource
utilization. For example, in the radar system (see Figure 1),
Track Init has very data-dependent needs as they vary with
the number of dwell returns above a selected threshold and
the ambiguity of spurious tracks. Thereby, the worst-case
needs depended on the worst-case execution scenario, which
makes them hard to evaluate and possibly very large com-
pared to the needs of a typical execution scenario.

Our solution to these problems is to use adaptive re-

source allocation (ARA). By taking advantage of the appli-
cation’s adaptation capabilities, this method permits using
long-term resource reservations while accommodating run-
time changes in resource needs.
Adaptive Resource Allocation. ARA is a resource man-
agement paradigm that takes advantage of an application’s
ability of runtime adaptation in order to accommodate dy-
namic resource needs and to satis{y the system goals with
respect to performance and resource utilization. In the con-
text of our target application model, the goal of ARA is to
insure that, at any time, the performance requirements of the
application are satisfied.

In our approach, the ARA infrastructure can satisfy two
types of resource requests: explicit and implicit. An ex-
plicit request is issued by the application upon a component
arrival to the system, or whenever the application deems
necessary to adjust its resource usage. An implicit request
is issued by the ARA infrastructure itself, when changes in a
component’s resource needs considerably increase the like-
lihood of failing to satisfy of the application’s performance
requirements.

The implicit requests. and sometimes also the explicit
ones, are satisfied by adjustments of the resource allocation
of one or more application components decided by the ARA
infrastructure itself. Such adjustments are called automatic
because they are not explicitly required by the application.
They are performed only when otherwise the performance
constraints of the application are very likely to be violated,
and they observe strictly the application/component specific
adaptation capabilities. For example, an automatic adjust-
ment might be performed when, due to the lack of resources
in the system, a new application component can not be ac-
commodated unless the allocation of other components is
reduced. Similarly, an automatic adjustment can be trig-
gered by an unexpected change in the execution environ-
ment that causes a change in the resource needs that can not
be accommodated in the current configuration. For exam-




ple, a change in the content of the input data may cause an
increase of event processing time for a particular compo-
nent that would require extending the component’s level of
parallelism in order to keep with the event rate.

In an alternative approach(5], the resource management
infrastructure can satisfy only explicit requests, but it can
provide the application with information on its observed
resource usage. The resource usage adjustment decisions
are made by the application itself.

In contrast, our automatic adjustments based approach
permits to move part of the burden of the adaptation de-
cisions from the application to the resource management
infrastructure. A similar approach is taken in [18, 17] and,
also, in our previous work [32]. The benefit of this approach
is that unexpected changes in the application’s resource
needs are likely to receive faster response. Compared to
the application, the resource management infrastructure has
faster access to all the information related to the resource
availability and current resource usage pattern of each ap-
plication component. In addition, the application overhead
with tracking the runtime variation of its requirements is
eliminated. The drawback is that, compared to application-
level decisions, the ARA decisions may fail to produce the
most appropriate resource assignment for each particular
situation. Likewise, ARA may result in changes in resource
allocations not necessary for the good performance of the
application. However, the models and mechanisms em-
bedded in an ARA infrastructure can help minimize these
drawbacks.
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Figure 2. Centralized ARA controller

In order to achieve its functionality, the ARA infrastruc-
ture should inciude mechanisms for: (1) collecting infor-
mation about application resource usage and resource avail-
ability; (2) detecting significant variations in application
resource usage: (3) inferring the cause of observed varia-
tions and assessing the necessity of an automatic adjustment
of the resource usage; (4) making decisions about resource
assignments and automatic resource allocation adjustments;
(5) notifying the application about significant changes in
its resource usage; (6) notifying the application and the re-
source providers about changes in resource allocation and
assisting them in the enactment of these changes. We assume
that each application component capable of runtime adap-

22

tations has specific reconfiguration procedures that can be
triggered by notifications of reallocation decisions received
from the ARA infrastructure.

The ARA functionality is based on knowledge of the ap-
plication characteristics. These characteristics are described
by an internal application model. Besides the structure of
the application (components, event streams, communica-
tion graphs) and its performance requirements, the model
describes for each application component, the acceptable
configurations (i.e., those instances of resource allocation
that permit it to perform correctly) and the runtime varia-
tion of resource requirements. The model is used for the
interpretation of monitored information, the estimation of
system performance upon changes in resource allocation,
and the guidance of decision heuristics. The internal appli-
cation model is importantly influencing the way the ARA
infrastructure can override the drawback with respect to the
appropriateness of its decisions,and the execution overheads
of the ARA mechanisms.

The performance of the overall ARA infrastructure and
of each of its mechanisms reflects in the enabled applica-
tion performance not only by how appropriate the resource
allocation decisions are but also by how fast the ARA in-
frastructure responds to unexpected changes in application

_behavior. A short response time helps to reduce the in-

tervals in which the application does not satisfy its timing
constraints and to remain within the acceptable miss rate
limits. Delayed ARA decisions or decisions that take 00
long to be enacted are less likely to reduce the risk of failing
to satisfy the application’s timing constraints.

In our work, the ARA functionality is provided by a
module called ARA controller. This module can have a dis-
tributed or a centralized architecture. Figure 2 depicts a
centralized controller, similar to the one used in our exper-
iments. The controller’s interaction with the application is
restricted to monitoring and reallocation enactment.

In the next sections we will address the internal appli-
cation model and the performance evaluation of an ARA
infrastructure. Both these issues have significant impact on
how the ARA can help an adaptive application to cope with
unexpected changes in its resource usage and with restriction
in resource availability.

3. Internal Application Model

This section describes the first novel contribution of our
research. We propose models describing the application re-
source usage 